
One Ring to rule them all, One Ring to find them,
One Ring to bring them all, and in the darkness bind them ...

How is database performance
doing today?

How is database performance
doing today?

● Cache buffer chains
● Latch contention
● …
● It’s going really good … :-)
● How to answer with a single number?

The Ultimate Answer to Life,
The Universe, and Everything.

(Douglas Adams)

How is database performance
doing today?

● Cache buffer chains
● Latch contention
● …
● It’s going really good … :-)
● How to answer with a single number?
● The Ultimate Answer to Life, The Universe,

and Everything?
● Possible?
● Meaningful?

Boris Oblak

One indicator to rule them all

Abakus Plus d.o.o.
● History

● From 1992
● ~20 employees

● DBA Applications
● DejaVu
● ARBITER
● APPM

● Enterprise Applications
● Document Management
● Newspaper Distribution
● Flight Information System

● Services
● OS & Network admin
● DBA, Programming

● Infrastructure
● > 20 years of experience

with
High Availability on
GNU/Linux

● Hardware
● Servers, SAN, ceph,
● Firewalls,
● Backup Server

Abakus and Oracle

● Oracle database on linux
● Abakus: 1995

(Oracle 7.1.5, Forms 3.0)
● Oracle: 1997

● Parallel execution
● Abakus: 2004

(SIOUG 2004: Vzporedno Izvajanje operacij s
PL/SQL – Boris Oblak)

● Oracle: 2007
dbms_parallel_execute

One indicator to rule them all

References

Database performance

● sql_id: elapsed time,
● job: elapsed time,
● entire instance?

● without measuring wall time and elapsed
time?

● How is DB behaving today?
● By how much will new HW speed up a DB?
● What kind of HW will make DB run twice

as fast?
● Change HW or hire a DBA?

At Any Point in Time

● You are doing:

Something

At Any Point in Time

● You are doing:
● something:

– shopping, exercising, feeding your
pets, preparing a meal, driving to a
destination, working, talking, studying,
… you are doing something.

Nothing

At Any Point in Time
● You are doing:

● something:
– shopping, exercising, feeding your pets,

preparing a meal, driving to a destination,
working, talking, studying, … you are doing
something.

● nothing:
– waiting on something:

● sleeping, waiting for the pizza delivery,
waiting in the market, waiting for coffe
to brew, waiting for inspiration to write a
code, waiting in line at the post office, ...

At Any Point in Time
● Working.
● Waiting.

● Does Not Necessarily Correlate With
Inefficiency.

● Your life is going to naturally have some
wait time build into it (and that’s ok).

Oracle Server Process
● Something (Executing Code – Burning

CPU)
● Nothing (Waiting – NOT Burning CPU)

Oracle Server Process

Executing Code

ON CPU

Oracle Server Process

Waiting

Wait Event
Waiting to read block into the buffer

cache
Waiting on DBRW to write dirty

blocks
Waiting on a row – lock

...

Oracle Server Process

● ON CPU
● Waiting

– Waiting to read block into the buffer cache
– Waiting on DBRW to write dirty blocks
– Waiting on a row – lock
– …

● Idle
– Waiting for some work to be assigned

● SQL*Net message from client?
● …

Most Healthy Queries
● Spends Some Time Waiting and
● Some time on CPU.
● Having some wait time is not bad.
● Your »regular life« has some wait time too.

Most Healthy Queries

User Experience

Response time

Response Time #0
● Unit of work (LIO)
● Time = »Working Time« + »Wait Time«
● Response time =

»Time« / »Units« (Time per one Unit -
ms/LIO)

https://method-r.com/wp-content/uploads/2017/07/Why-You-Should-Focus-on-LIOs-Instead-of-PIOs.pdf
https://blog.pythian.com/do-you-know-if-your-database-slow/
https://blog.orapub.com/20181204/do-direct-path-reads-count-as-logical-reads.html

https://method-r.com/wp-content/uploads/2017/07/Why-You-Should-Focus-on-LIOs-Instead-of-PIOs.pdf
https://blog.pythian.com/do-you-know-if-your-database-slow/
https://blog.orapub.com/20181204/do-direct-path-reads-count-as-logical-reads.html

Response Time #0
● Time to complete operation

● »Units to be done« * »Response Time«

Response time #1
● In a perfect world – most ON CPU: min Rt

Ideal Response time

Real Response time

Response time #1
● In a perfect world – most ON CPU: min Rt,
● Average – unreal, in more than 50% SQL will

run longer,
● Real:

● snapshot of an »acceptable« case,
● baseline (e.g. Rt covering 95% of all cases),
● standard deviation.

● Calculate response time baseline when
database performs »acceptable«.
● Carve it in stone.

Baseline

Carve Response
Time in stone.

Baseline

Baseline

Baseline

Work and Time

● Oracle Work:
● ON CPU.
● Wait.

Work and Time

● Oracle Work:
● ON CPU.
● Wait.

DB time

Unit of Work: LIO (logical IO)

● LIO processing is the number-one
bottleneck for many busieness processes.

● LIO consumes two of system’s most
expensive resources: CPU and latches.

https://method-r.com/wp-content/uploads/2017/07/Why-You-Should-Focus-on-LIOs-Instead-of-PIOs.pdf
https://blog.pythian.com/do-you-know-if-your-database-slow/
https://blog.orapub.com/20181204/do-direct-path-reads-count-as-logical-reads.html

https://method-r.com/wp-content/uploads/2017/07/Why-You-Should-Focus-on-LIOs-Instead-of-PIOs.pdf
https://blog.pythian.com/do-you-know-if-your-database-slow/
https://blog.orapub.com/20181204/do-direct-path-reads-count-as-logical-reads.html

Work and Time

● Oracle Work:
● 9 min ON CPU.
● 1 min Wait.

● time = DB time = 10 min.
● work = 3.000.000 LIO
● (10 * 60 * 1000) / 3.000.000 =

0,02 ms/LIO.
● Time to process single LIO = 0,02 ms!
● This will be our indicator.

How can we use it

● When number of LIO increases, DB time
increases (more work = more LIO & more
DB time).

● Relationship between LIO and DB time is
linear.

● Indicator (ms/LIO) remains more or less
the same.

● Until system get’s too busy!
● If indicator increases … may have a

problem!

Get the data

● AWR (EE), statspack, Abakus APPM, ...
● DB time
● statistic: »session logical reads«

● Running system:
● DB time: SELECT value FROM
v$sys_time_model WHERE stat_name =
'DB time';

● LIOs: SELECT value FROM v$sysstat WHERE
name = 'session logical reads';

Tests

● Take sample.
● Run load.
● Take sample.
● Calculace deltas.

Calculation

● Samples (convert all time to milliseconds):
● wall time: delta wall time (ms).
● DB time: delta DB time (ms).
● LIO: delta LIO.

● workload = DB time / wall time.
● response time = DB time / LIO.
● throughput = LIO / wall time.

DIY sampler

● v$sys_time_model.
● v$sysstat.
● (v$system_event).
● drill down:

● v$sess_time_model.
● v$sesstat.
● (v$session_event).

● v$sysmetric.

Tests #1

● server (vm hypervisor): 12-CPU
● 4-CPU virtual machine
● Oracle 19c (19.14.0) database
● tests:

● parallel = 1
● parallel = 2
● parallel = 4
● parallel = 8

Tests #2

● Java, parallel threads.
● (DBMS_SCHEDULER, bash, …).

● Test SQL:
● prepare:

– CREATE TABLE t_samples AS SELECT *
FROM dba_objects; -- source data

● test:
– in endless loop:

● INSERT INTO global_temporary_table
SELECT * FROM t_samples;

● COMMIT; -- clear inserted data

Tests #3

● Testcase 1: empty machine – only database
(test name = NORMAL).

● Testcase 2: overloaded VM:
stress --cpu 4
(testname LOCAL LOAD)

● Testcase 3: overloaded server (vm
hypervisor)
stress --cpu 12
(testname HOST LOAD)

Test: NORMAL (data)

Threads Wall
Time(ms)

DB time(ms) Workload Throughput
(LIO/ms)

Response Time
(ms/LIO)

1 300000 304468,34 0,9719 56,00671 0,018121

2 300000 603450,95 1,9131 109,91091 0,018301

4 300000 1204773,67 3,8307 210,24094 0,019101

Response Time

● rate of work_done and work_time is linear.
● as work_done increases so does the

work_time.
● Response Time is constant.

Work done and work time

Response Time

● rate of work_done and work_time is linear.
● as work_done increases so does the

work_time.
● Response Time is constant.
● until ...

Response Time

● rate of work_done and work_time is linear.
● as work_done increases so does the

work_time.
● Response Time is constant.
● until ...
● the system get’s too busy.

Test: NORMAL (data)

Threads Wall
Time(ms)

DB time(ms) Workload Throughput
(LIO/ms)

Response Time
(ms/LIO)

1 300000 304468,34 0,9719 56,00671 0,018121

2 300000 603450,95 1,9131 109,91091 0,018301

4 300000 1204773,67 3,8307 210,24094 0,019101

8 300000 2392955,59 7,6253 196,23527 0,040648

Test: NORMAL (graph)

Test: NORMAL (ash)

Work Done (LIO): 16.802.014

LOCAL_LOAD (top)

$ for i in $(seq $(getconf _NPROCESSORS_ONLN)); do yes > /dev/null & done

Test: LOCAL_LOAD (data)

Threads Wall
Time(ms)

DB time(ms) Workload Throughput
(LIO/ms)

Response Time
(ms/LIO)

1 300000 306109,6 1,02037 36,11619 0,028252

2 300000 604716,22 2,01572 64,5119 0,031246

4 300000 1199513,86 3,99838 104,62531 0,038216

8 300000 2410920,08 8,0364 99,94473 0,080408

Test: LOCAL_LOAD (graph)

Test: LOCAL_LOAD (ash)

Work Done (LIO): 10.834.856

HOST_LOAD (top)

HOST_LOAD (VM)

Test: HOST_LOAD (data)

Threads Wall
Time(ms)

DB time(ms) Workload Throughput
(LIO/ms)

Response Time
(ms/LIO)

1 300000 315294,26 1,05098 37,46018 0,028056

2 300000 619339,74 2,06447 76,47778 0,026994

4 300000 1206753,46 4,02251 156,00989 0,025784

8 300000 2412776,96 8,04259 170,87222 0,047068

Test: HOST_LOAD (ash)

Work Done (LIO): 13.860.714

ASH

ASH

Load tests - compare

Production samples

● Exadata, Oracle 11.2.0.4 EE
● cpu_count = 12.

Production samples – #1

Production samples – #1
(timeline)

Production samples – #1 (ash)

Production samples – #1 (ash)

Production samples – #1 (ash)

Production samples – #2

Production samples – #2

Production samples – #2

Production samples – #2

Production samples – #3

Production samples – #3

Production samples – #3

VM - top

Production samples – #3

Server (vm hypervisor) swap

Production samples – #4

Production samples – Sample #5

Collecting Samples

● AWR – Enterprise Edition.
● DIY sampler.
● Abakus APPM.
● 1h frequency (too infrequent).
● 10 min frequency (best experience – own

tests).

Interpreting Response Time

● Rt depends on hardware.
● Baseline (when database performs well).

Baseline

Monitoring

● Monitoring database activity.
● React when Rt is over baseline.

● drill down into session:
– v$sess_time_model, v$sessstat

● not in AWR.
– DIY samplers (on logoff triggers).
– Abakus APPM.

Example #1 (APPM)

Example #1 (APPM)

Example #2 (APPM)

Example #2 (APPM)

I'm not interested in LIO, I'm
interested in the duration of

an SQL statement.

Calculate execution time

● Calculate minimal execution time based on
Response time:
● clone production database.

– (see Abakus DejaVu)
● execute new SQL with autotrace enable.

– (LIO = consistent gets + db block
gets)

● Min_elapsed = LIO * Rt.
– be aware of parallelism!

Calculate execution time

set timing on
set autotrace traceonly

select count(*) from <TABLE> ...

Elapsed: 00:00:00.51
Statistics
--
 0 db block gets
 28313 consistent gets
 1 rows processed

Calculate execution time

● BASELINE_95: Rt = 0,020 ms/LIO
● LIO = 28313
● Execution time = LIO * Rt / 1000

● Execution time(95): 0,56626 sec

Hardware changes

● Hardware changes (CPU, RAM, …),
● Run tests on new HW,
● Calculate (sample) Response Time,
● Compare Response Time with production.

● Abakus APPM.

Hardware changes

Hardware changes

Threats

● Can be fooled?

SELECT COUNT(*)
 FROM sys.obj$ a
 JOIN sys.obj$ b
 ON a.owner# = b.owner#
 JOIN sys.obj$ c
 ON b.owner# = c.owner#
 JOIN sys.obj$ d
 ON c.owner# = d.owner#
 WHERE rownum <= &1;

One indicator to rule them all
● DB performance tracking.
● External DB and VM load awareness.
● HW change impact testing.
● Database upgrade.
● New application installed.
● More users.
● Cannot be tricked unlike “buffer cache hit

ratio”.

http://www.abakus.si/

ORA-03113: end-of-file on communication channel

?

http://www.abakus.si/

New query execution time
● POC:

● deploy test DB as production clone
(Abakus DejaVu, Snapshot Standby, …),

● run the query and get number of LIO
(Units),

● caluculate run time in production
environment:
– »Prod Time« = »Units« * »Response

Time(PROD)«.

HW changes
● CPU bound,
● I/O bound,
● POC:

● calculate response time,
● calculate new execution time:

– »New Time« = »Units(PROD)« * »New
Response Time«.

Bad, normal or good?

Real Response time

SQL
WITH snapshots AS
 (SELECT snap_id
 ,sample_time
 ,extract(hour FROM(sample_time - sample_time_prev)) * 60 * 60 +
 extract(minute FROM(sample_time - sample_time_prev)) * 60 +
 extract(SECOND FROM(sample_time - sample_time_prev)) wall_time_s
 FROM (SELECT snap_id
 ,end_interval_time sample_time
 ,lag(end_interval_time, 1) over(ORDER BY end_interval_time) sample_time_prev
 FROM dba_hist_snapshot s)
 WHERE sample_time_prev IS NOT NULL),
gtt_stats AS
 (SELECT snap_id
 ,stat_name
 ,VALUE / 1000 AS stat_value_ms
 ,lag(VALUE, 1, 0) over(ORDER BY snap_id) / 1000 AS stat_value_ms_prev
 FROM dba_hist_sys_time_model tm
 WHERE stat_name = 'DB time'
 UNION ALL
 SELECT s.snap_id
 ,s.stat_name
 ,s.value stat_value_ms
 ,lag(VALUE, 1, 0) over(ORDER BY snap_id) AS stat_value_ms_prev
 FROM dba_hist_sysstat s
 WHERE s.stat_name LIKE 'session logical reads')
SELECT snap_id
 ,sample_time
 ,wall_time_s
 ,delta_db_time_ms / (wall_time_s * 1000) workload
 ,delta_db_time_ms / 1000 delta_db_time_s
 ,delta_lio / (wall_time_s * 1000) throughput_lio_per_ms
 ,delta_db_time_ms / delta_lio response_time_ms_per_lio
 FROM (SELECT s.snap_id
 ,s.sample_time
 ,s.wall_time_s
 ,dbt.stat_value_ms - dbt.stat_value_ms_prev delta_db_time_ms
 ,dbl.stat_value_ms - dbl.stat_value_ms_prev delta_lio
 FROM snapshots s
 JOIN gtt_stats dbt
 ON dbt.snap_id = s.snap_id
 AND dbt.stat_name = 'DB time'
 AND dbt.stat_value_ms_prev != 0
 JOIN gtt_stats dbl
 ON dbl.snap_id = s.snap_id
 AND dbl.stat_name = 'session logical reads'
 AND dbl.stat_value_ms_prev != 0);

SQL
gtt_stats AS
 (SELECT snap_id
 ,stat_name
 ,VALUE / 1000 AS stat_value_ms
 ,lag(VALUE, 1, 0) over(ORDER BY snap_id) / 1000
AS stat_value_ms_prev
 FROM dba_hist_sys_time_model tm
 WHERE stat_name = 'DB time'
 UNION ALL
 SELECT s.snap_id
 ,s.stat_name
 ,s.value stat_value_ms
 ,lag(VALUE, 1, 0) over(ORDER BY snap_id) AS
stat_value_ms_prev
 FROM dba_hist_sysstat s
 WHERE s.stat_name LIKE 'session logical reads')

SQL
SELECT snap_id
 ,sample_time
 ,wall_time_s
 ,delta_db_time_ms / (wall_time_s * 1000) workload
 ,delta_db_time_ms / 1000 delta_db_time_s
 ,delta_lio / (wall_time_s * 1000) throughput_lio_per_ms
 ,delta_db_time_ms / delta_lio response_time_ms_per_lio
 FROM (SELECT s.snap_id
 ,s.sample_time
 ,s.wall_time_s
 ,dbt.stat_value_ms - dbt.stat_value_ms_prev
delta_db_time_ms
 ,dbl.stat_value_ms - dbl.stat_value_ms_prev delta_lio
 FROM snapshots s
 JOIN gtt_stats dbt
 ON dbt.snap_id = s.snap_id
 AND dbt.stat_name = 'DB time'
 AND dbt.stat_value_ms_prev != 0
 JOIN gtt_stats dbl
 ON dbl.snap_id = s.snap_id
 AND dbl.stat_name = 'session logical reads'
 AND dbl.stat_value_ms_prev != 0);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108

