

SSH – Bad Habits and Their Solutions

mag. Sergej Rožman; Abakus plus d.o.o.

The latest version of this document is available at:

http://www.abakus.si/

http://www.abakus.si/

SSH – Bad habits and their solutions

mag. Sergej Rožman
sergej.rozman abakus.si

Abakus plus d.o.o.
History

since 1992, ~20 employees

Applications:
ARBITER – the ultimate tool in audit trailing
APPM – Abakus Plus Performance Monitoring Tool
DejaVu - High Performance Architecture for Virtual Databases

Services:
DBA, OS administration , programming (Oracle)

Infrastructure:
servers, SAN storage, UPS, firewalls, backup servers, virtualization

Skills & Experience:
from 1995 GNU/Linux (~30 years of experience !)
Oracle on GNU/Linux: since RDBMS 7.1.5 & Forms 3.0 (before Oracle !)
~35 years of experience with High-Availability !

Customers

What do we want to achieve?

We manage 1000+ Physical and Virtual Servers
Across Multiple Client Environments

Security hardening at scale

Efficient user lifecycle management (the server must be self-

sufficient)

Audit trail and session logging (optional but desirable)

SSH – Secure Shell
The ubiquitous de facto standard

Traditionally included on Linux (Unix) systems

 Windows
SSH client included since Windows 10 version 1803 and
Windows Server 2019
SSH server as an Optional feature

Mostly included in embedded systems
(routers, switches, firewalls, NAS, SAN, ...)

Password Authentication
Problems:

Weaker security
Brute force attack
Password transfers over the line (although encrypted)

Reusing/sharing passwords
No MFA
Difficult to enforce policies
Less automation friendly (scripts)
No user management

Password Threats

SSH Public-key Authentication

Pros:
Simplicity
Familiarity
Private key never
leaves the client

Cons:
Difficult to enforce policies
No user management
No MFA

public keyprivate key

SSH Public Keys

Generating a user keypair

Produces two files:

Appending the public key to the remote site into the users’s authorized_keys

ssh-keygen -t ed25519 -C "user@example"

private key
~/.ssh/id_ed25519

public key
~/.ssh/id_ed25519.pub

cat ~/.ssh/id_ed25519.pub >> ~/.ssh/authorized_keys

SSH Public-key User Authentication

initiate SSH connection

send some challengeprivate key

ssh-agent signs the challenge

server verifies the signature

if the signature is valid, the client is authenticated

public key

client server

Digital Certificate
CA guarantees the authenticity of the public key.

Contains attributes

Certificate

attributes

CA
signature

public key
private key

X.509 vs SSH Certificate

S S HX . 5 0 9

Common Name (CN)
notBefore
notAfter
...

Principal
notBefore
notAfter
...

CA
signature

CA
signature

public key public key

SSH Certificate Config

/etc/ssh/sshd_config:

This is the CA's public key for authenticating user certificates:
TrustedUserCAKeys /etc/ssh/sshd_config.d/ssh_user_ca_key.pub

/etc/ssh/sshd_config.d/ssh_user_ca_key.pub:

ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBNwHkLXc
QJAThObgJlYSEhkQ1jtU0MaTs7gnwMAmnxYGznaDt5F/YKzScWvZ/UgjhD4HCSFo+tVFBhek7QoA2I4=

Enter the CA public key

into the sshd configuration

SSH User Certificate Authentication Sequence

initiate SSH connection
and send a user certificate

verify the certificate

private key

client server

continue as in the case
with a private key

CA public key

user certificate

if the signature is valid, the client is authenticated

SSH Certificates Using SSH Tools

Generate CA keypair

Generate a user keypair

Sign the user’s public key with the CA

ssh-keygen -f ~/.ssh/ssh_ca -t rsa -b 4096 -C "SSH CA"

ssh-keygen -f ~/.ssh/user_key -t ed25519 -C "user@example"

ssh-keygen -s ~/.ssh/ssh_ca -I ID -n username -V +52w ~/.ssh/user_key.pub

SSH Certificate

Inspect the user certificate
ssh-keygen -L -f ~/.ssh/user_key-cert.pub
/root/.ssh/test/user_key-cert.pub:
 Type: ssh-ed25519-cert-v01@openssh.com user certificate
 Public key: ED25519-CERT SHA256:K16ar6fqhPvxjdxsQaXSk49JKN4+4sgbUZ/DILkzHBg
 Signing CA: RSA SHA256:fMazeIL5G3La8vRy///Hz7zMj+Zmyhhv7VPwzSYtOGk
 (using rsa-sha2-512)
 Key ID: "ID"
 Serial: 0
 Valid: from 2025-05-08T14:53:00 to 2026-05-07T14:54:22
 Principals:
 janez
 Critical Options: (none)
 Extensions:
 permit-X11-forwarding
 permit-agent-forwarding
 permit-port-forwarding
 permit-pty
 permit-user-rc

Introducing Smallstep
https://smallstep.com/product/ssh/

Open-source CA (SSH and X.509 certificates)

Server – step-ca
On-premises or
CA as a service from the cloud

Client – step-cli
Linux
Windows
MacOS

step-ca

OIDC X5C JWK ...

provisioners

authenticators

...client

server

SSH log in

SSH Certificates Using step-cli

Generate a user keypair and certificate

Generate a private key, certificate and add them to the ssh-agent

Automatic integration into the SSH client

step ssh certificate ID ~/.ssh/user_key

step ssh login username@host.si

~/.ssh/config:

Match exec "step ssh check-host %h"
 User $USER
 ProxyCommand step ssh proxycommand %r %h %p --provisioner "Google"

SSH Certificate

Inspect the user certificate using »step ssh inspect«
step ssh inspect ~/.ssh/user_key-cert.pub
/root/.ssh/test/user_key-cert.pub:
 Type: ecdsa-sha2-nistp256-cert-v01@openssh.com user certificate
 Public key: ECDSA-CERT SHA256:wEKh31hlxfhlJIhzVsLmdWVXJTtnvtAonRiJ/veCUmI
 Signing CA: ECDSA SHA256:urGP2m5XNO8OQu1z1a8G2TwkYFUekhcJUi5ZoSKhBpM
 (using ecdsa-sha2-nistp256)
 Key ID: "sergej@abakus.si"
 Serial: 1005835596821517067
 Valid: from 2025-05-26T13:50:58 to 2025-05-26T21:50:58
 Principals:
 sergej
 sergej@abakus.si
 Critical Options: (none)
 Extensions:
 permit-X11-forwarding
 permit-agent-forwarding
 permit-port-forwarding
 permit-pty
 permit-user-rc

Certificate vs Public Key Authentication

Pros:
Simplicity
Familiarity
Private key never
leaves the client

Cons:
Difficult to enforce policies
No user management
No MFA

private key
public key

User Management
First idea

A user who has never
been seen before but
has a valid certificate
wants to log in.

/etc/ssh/sshd_config:

Script to be executed upon certificate authentication
AuthorizedPrincipalsCommand <script.name>

Access Denied
Authorisation denied for non-existent user

The server does not run
AuthorizedPrincipalsCommand
if a user does not exist

Creating a User Account
First access to the system in two steps

Log in to a proxy account using the user certificate to
create a user account

Log in to a user account

Improvements?

Ideas
Patch ssh-server

Contribute to the improvement to the community

Asking ssh authors for improvement

Something else

Audit Trail – sshlog.com
Monitor SSH access to servers and detect suspicious
activity

Send real-time alerts to the system administrator for
immediate action

Record SSH session activity logs for improved security
and audit compliance

For the end – work in progress

SSH – Bad Habits and Their Solutions

Thank You
mag. Sergej Rožman
ABAKUS plus d.o.o.
Ljubljanska c. 24a, Kranj, Slovenija

e-mail: sergej.rozman abakus.si

	Prosojnica 1
	Prosojnica 2
	Prosojnica 3
	Prosojnica 4
	Prosojnica 5
	Prosojnica 6
	Prosojnica 7
	Prosojnica 8
	Prosojnica 9
	Prosojnica 10
	Prosojnica 11
	Prosojnica 12
	Prosojnica 13
	Prosojnica 14
	Prosojnica 15
	Prosojnica 16
	Prosojnica 17
	Prosojnica 18
	Prosojnica 19
	Prosojnica 20
	Prosojnica 21
	Prosojnica 22
	Prosojnica 23
	Prosojnica 24
	Prosojnica 25
	Prosojnica 26
	Prosojnica 27
	Prosojnica 28
	Prosojnica 29

